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Abstract. Dispersion of light waves is well known, but the subject deserves some comments. Certain classical
equations do not fully respect causality; as an example, group velocity vg is usually given as the first derivative
of the angular frequency x with respect to the angular spatial frequency km (or wavenumber) in the medium,
whereas it is km that depends on x. This paper also emphasizes the use of phase index n and group index ng, as
inverse of their respective velocities, normalized to 1/c, the inverse of free-space light velocity. This clarifies the
understanding of dispersion equations: group dispersion parameter D is related to the first derivative of ng with
respect to wavelength k, whilst group velocity dispersion GVD is also related to the first derivative of ng, but
now with respect to angular frequency x. One notices that the term second order dispersion does not have the
same meaning with k, or with x. In addition, two original and amusing geometrical constructions are proposed;
they simply derive group index ng from phase index n with a tangent, which helps to visualize their relationship.
This applies to bulk materials, as well as to optical fibers and waveguides, and this can be extended to birefrin-
gence and polarization mode dispersion in polarization-maintaining fibers or birefringent waveguides.

Keywords: Birefringence, Chromatic dispersion, Dispersion, Effective index, First-order dispersion, Group
birefringence, Group index, Group velocity dispersion, Index of refraction, Polarization mode dispersion,
Refractive index, Second-order dispersion.

1 Introduction

The theory of dispersion of light waves is well known and
can be found in many textbooks, as for example [1–3], but
the way it is usually presented deserves some comments.
For example, causality can be seen as not being fully
respected in the basic equations, within the meaning of
causal link between their parameters.

This paper also emphasizes that the indexes are very
convenient to understand more easily the equations describ-
ing dispersion. They should be viewed as inverses of veloc-
ity, normalized to 1/c, the inverse of light velocity c in a
vacuum, knowing that there is no short word for these
inverses that are involved in these equations. Furthermore,
indexes are dimensionless values, which avoids dealing
with units that are not always easily understandable, as
we shall see.

In addition, two simple and amusing geometrical con-
structions are presented to derive group index ng from
refractive index n with a tangent. To my knowledge, they
are original. They apply to material dispersion, but also to
guidance dispersion in a fiber or a waveguide, as well as to
birefringence and intrinsic polarization mode dispersion

(I-PMD) in polarization-maintaining (PM) fibers or bire-
fringent waveguides.

Obviously, this does not prevent the use of Sellmeier’s
equation [4] and derivatives with a computer, to calculate
precisely these indexes, but this brings a complementary
view to visualize simply the question of dispersion,
and the relationship between refractive index n and group
index ng.

2 Comments regarding causality

The first analysis of dispersion was done by Newton, in the
mid-17th century, with a prism that can separate the vari-
ous colors of white light, because the refractive index n (or
index of refraction) of a glass is not constant; it is called
chromatic dispersion (chroma is color, in ancient Greek).
At the beginning of the 19th century, with the work of
Fresnel on the mathematical theory of diffraction, it was
finally accepted by the scientific community that light is
a wave, as proposed by Huygens at the end of the 17th
century, and that the index n is the ratio between light
velocity c in a vacuum and its lower velocity in a medium.
Remember that Newtonian corpuscular theory stated the
opposite, with light going faster in a medium than in a
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vacuum, and that it required more than a century to get
Huygens’ wave model accepted, because of the tremendous
prestige of Newton, as discussed by Aspect in a recent
historical review paper [5].

In acoustics, it was proposed by Hamilton in the first
half of the 19th century that a modulated wave has in fact
two velocities: the sinusoidal carrier does propagate at the
velocity of a continuous wave, called the phase velocity
vu, but the modulation term propagates at the so-called
group velocity vg. This concept of group velocity was later
developed in full mathematical details by Rayleigh in his
iconic book, The Theory of Sound [6], and group velocity
was seen as the velocity of signal energy.

At the beginning of the 20th century, the application of
this concept to optical waves raisedmany questions, because
it could lead to a group velocity higher than c, in the case of
high anomalous dispersion, i.e., when (dn/dk) � 0, which
was contradictory with the Theory of Relativity. This ques-
tion was brilliantly solved by Sommerfeld and Brillouin in
twin papers of 1914 [7, 8]. An English version of these papers
can be found in the very interesting Brillouin’s book of 1960,
Wave Propagation and Group Velocity [9]. The important
result is that anomalous dispersion happens when there is
absorption, as in the far ultra-violet for example, but with
absorption, group velocity is not the velocity of signal energy
anymore; then, it is not contradictory with Relativity.

Going back to the usual case of normal optical dispersion
in transparent dielectric media, i.e., when (dn/dk) < 0,
phase velocity vu = c/n and group velocity vg are classically
given by [1–3]:

vu ¼ x=km and vg ¼ dx=dkm; ð1Þ
where x is the angular (temporal) frequency, and km is the
angular spatial frequency in the medium. For km = 2p/
km = 2p � n/k, with km = k/n being the wavelength in
the medium and k being the wavelength in a vacuum, the
terms angular wave number, or wave number alone, are
also used, but I prefer angular spatial frequency to outline
the duality between the temporal domain and the spatial
domain.

I do not like much the use of the derivative dx/dkm for
the definition of vg, since it does not respect the causal link
between km and x, that I call, in short, causality in this
paper: it is km that depends on x, and not x that depends
on km. You may say that dx/dkm and (dkm/dx)

�1 are alike
for Leibniz’s notation of derivatives, beauty of math, but
with Lagrange’s notation, that I prefer here, it is less clear:
x0(km) suggests a causality that would not be fully
respected, whereas [k0m(x)]

�1 does respect causality.
To be more specific, you must agree that it is the index

n (involved in km = 2p � n/k), that depends on the wave-
length k in a vacuum (involved in x, with x = 2p � c/k),
and not the opposite; it is n(k) and not k(n), even if k, as
a function of n, remains mathematically possible. Math does
not care about causality and can inverse a function, but
causality is fundamental in physics! Equation (1) should be:

1=vu ¼ km=x and 1=vg ¼ dkm=dx ¼ k 0mðxÞ: ð2Þ
You may think that it is nit-picking but, to me, it is impor-
tant, and I wanted to share this view. I am not the only one

to think that, and equation (2) is found in several textbooks
[10–12], even if they do not outline the difference between
(1) and (2). It must be obvious for the authors of these
references, but I am not sure that it is obvious for every
reader of this article.

Now, if a frequency is the inverse of a period, as we have
all learned with music, there is no short word for the inverse
of a velocity, that is involved in (2). The habit is to use
temporal delay over a unit distance [3] or group delay per
unit length [10], with tg = 1/vg, but it is not very concise.
Slowness could have been possible, but it is not very posi-
tive wording. This can be overcome with the use of refrac-
tive index n, also called phase index since n = c/vu, and of
group index ng = c/vg. They should be viewed as the inverse
of a velocity, normalized to 1/c. Relativity physicists do
normalize the time dependence c � t of their equations with
c = 1, to get the same temporal dimension as that of the
spatial coordinates; we can do the inverse! So, there are:

n ¼ ð1=vuÞ=ð1=cÞ and ng ¼ ð1=vgÞ=ð1=cÞ: ð3Þ
You may think that it is nit-picking again, or obvious math,
but I prefer to consider that it is useful to understand dis-
persion better. Using group index ng, as defined in (3), it
is simple to derive its relationship with phase index n. Since
km = n(x)�x/c, there is:

ngðxÞ ¼ ð1=vgÞ=ð1=cÞ ¼ c � dkm=dx
¼ d½n xð Þ � x�=dx: ð4Þ

It is important to notice in (4) the derivative of the product
[n(x) � x]. It explains the difference between dispersion seen
as a function of wavelength k, and seen as a function of
angular frequency x, as we shall see later. Now from (4):

ngðxÞ ¼ d½n xð Þ � x�=dx ¼ nðxÞ þ ½x � dn=dx�: ð5Þ
With Lagrange’s notation of derivative, instead of Leibniz’s
notation, this yields:

ng xð Þ ¼ n xð Þ þ x � n0 xð Þ½ �: ð6Þ
This well-known equation is often written as a function of
the wavelength k in a vacuum. Since x = 2p � c/k, there
is, by logarithmic differentiation, dx/x = �dk/k, and then:

ngðkÞ ¼ nðkÞ � ½k � dn=dk� ð7Þ
or, with Lagrange’s notation:

ng kð Þ ¼ n kð Þ � k � n0 kð Þ½ �: ð8Þ
It is often taught that there is no group velocity dispersion,
when the second derivative n00(k), or d2n/dk2, is equal to 0;
for silica fibers, it is for k = 1.3 lm. Geometrically, this
corresponds to an inflexion point of the refractive index
curve n, as a function of wavelength k (Fig. 1). It is math-
ematically true but, again, it does not fully respect causal-
ity. The cause is that there is no group dispersion when
group velocity vg, as well as group index ng, are constant,
i.e., when its first derivative dng/dk, or n0

g(k), is equal to
zero. It happens to be the case when the second derivative
of the refractive (or phase) index, d2n/dk2, or n00(k), equates
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zero, but it is only a consequence of the fact that
dng/dk = �k � d2n/dk2; it is not the original cause which
is dng/dk equates zero.

This result influenced a vocabulary that must be han-
dled with care. Chromatic dispersion, also known as phase
velocity dispersion, i.e., first derivative of phase index
dn/dk 6¼ 0, is often called first-order dispersion, and group
velocity dispersion, i.e., first derivative of group index
dng/dk 6¼ 0, but also second derivative of phase index
d2n/dk2 6¼ 0, is often called second-order dispersion.

So, I have another comment: if one considers frequencies
(angular, x, or regular temporal, f = x/2p, or spatial,
r = 1/k), this does not work anymore; this works only with
period, i.e., wavelength k or temporal period T = 1/f. No
group velocity dispersion means that dng/dx (or dng/df,
or dng/dr) is equal to zero, since it is the basic cause,
but from (5):

dng=dx ¼ d½nðxÞ þ ðx � dn=dxÞ�
¼ ð2 � dn=dxÞ þ ðx � d2n=dx2Þ ð9Þ

Therefore, when dng/dx = 0, the second derivative
d2n/dx2 of the phase index equates �(2�dn/dx)/x, and
it is not null. There are similar equations with f and r, since
df/f = dr/r = dx/x, by logarithmic differentiation.

Nevertheless, it is possible to view second-order disper-
sion with frequency. It is not as visual as for wavelength,
with the inflexion point of the refractive index dependence,
but it remains simple mathematically. We saw in (2) that
tg = 1/vg = dkm/dx, and group dispersion is the first
derivative of this group delay tg over a unit distance, i.e.,
1/vg. With frequency, it is called group velocity dispersion
(GVD), and:

GVD ¼ dtg=dx ¼ dð1=vgÞ=dx ¼ d2km=dx2: ð10Þ
Since km = 2p � n/k = [(n(x)�x]/c, there is no second order
dispersion when the second derivative of the product n
(x) � x is null, i.e., when d2 km/dx

2 = (1/c)�d2[n(x)�x]/
dx2 = 0, whereas, with k, it is when the second derivative
of the refractive index n(k) alone is null, i.e. d2n/dk2, as
we already saw.

To promote, again, indexes as normalized inverse veloc-
ities, I have an additional comment with what is called
group dispersion parameter, D, and what is called, we just
saw, group velocity dispersion, GVD, as you find on refrac-
tiveindex.info web site, for example. D is classically
expressed in ps/(nm km), and it is simply [3]:

D ¼ dtg=dk ¼ dð1=vgÞ=dk: ð11Þ
Using the first derivative of ng(k), this yields:

D ¼ ð1=cÞ � dng=dk ¼ ð1=cÞ � n0
gðkÞ: ð12Þ

GVD is similar, but it is using the derivative with respect to
x, instead of k:

GVD ¼ dtg=dx ¼ dð1=vgÞ=dx: ð13Þ
Using the first derivative of ng(x), this yields:

GVD ¼ ð1=cÞ � dng=dx ¼ ð1=cÞ � n0
gðxÞ: ð14Þ

Its unit is square second per meter. This is concise but not
easily understandable. It would be clearer to use s/[(rad/
s) m], or s2/(rad m), a radian per second being the unit of
x, even if a radian is a dimensionless unit that can be omit-
ted. This is a complicated question, by the way, to decide if
a dimensionless unit can be omitted or not?

In silica, at 1550 nm, dn/dk � �0.012 lm�1 and
dng/dk � +0.007 lm�1 (Fig. 2). I like these values that
have a simple unit, and that you can check on index curves.
Now, since 1/c is about one nanosecond per foot (a very
useful value that I learned and still remember frommy post-
doc at Stanford University, in the early 1980s), group dis-
persion parameter D is about +23 ps/(nm km), and
group velocity dispersion GVD is about �28 ps2/km (or
fs2/mm).

To understand better ps2/km, the unit of GVD, and to
compare it with ps/(nm km), the unit of D, one must see
that in “ps2”, there are a first “ps” for the delay, as in
ps/(nm km), and a second “ps” that is actually
1/(10+12 rad/s), with the omission of dimensionless radian.
At 1550 nm, where the temporal frequency f is 193.5 THz,
the angular frequency,x= 2p � f, is about 1.2� 10+15 rad/s;
then, a value of 10+12 rad/s for the shift Dx, is around 0.1%
of x. The “nm” used in D for Dk is also a shift of about 0.1%
of the wavelength, that is in the lm range, and then, the
two numerical values, 23 and 28, are close. One femtosec-
ond, for GVD, is about equivalent to one nanometer to
the �1 power, for D.

In any case, ps2/km remains a strange unit to me. As a
teaser, it would have been also possible to use a concise and
strange unit for D: ps/mm2, since 1 nm � 1 km =
1 mm � 1 mm, but with mm2, it looks like an area!

Finally, remember that D and GVD have opposite
signs, since x = 2p � c/k, and then, dx/dk is negative, as
well as dk/dx. To talk about positive or negative group dis-
persion requires to specify if it is with respect to period, or
to frequency. To avoid this problem, it is customary to use
for group velocity dispersion the same vocabulary as the
one used for phase velocity dispersion. As we saw, normal
dispersion corresponds to a negative derivative of the index
with respect to k, and anomalous dispersion corresponds to

Fig. 1. Refractive (or phase) index n (solid line curve), and
group index ng (dashed line curve) of silica, as a function of the
wavelength k in a vacuum. At 1.3 lm, there is no group velocity
dispersion since ng is constant, i.e., dng/dk is null. This is the
basic cause; the fact that d2n/dk2 = 0 at 1.3 lm is just a
consequence of dng/dk = �k � d2n/dk2.
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a positive derivative. However, I am not very fond of this
vocabulary for group dispersion, even if it is convenient.
Anomalous has an understandable meaning with phase
velocity dispersion, since it is when the medium is absorb-
ing, and it is not the normal use in the transparency
window. With group velocity dispersion, a positive group
index derivative is not Anomalous, nor abnormal, strictly
speaking. Taking the case of silica, it is simply above
1.3 lm, as seen in Figure 2!

3 Simple geometrical constructions to derive
ng from n

Let us consider the theoretical case of a material with-
out any group dispersion. As we saw, dng/dk = 0 implies
that d2n/dk2 = 0. The curve of the refractive (or phase)
index n as a function of wavelength k is a simple affine
function, with a constant slope, equal to dn/dk, since
d2n/dk2 = 0:

nðkÞ ¼ nð0Þ þ ðk � dn=dkÞ: ð15Þ
Because the group index ng(k) is equal to n(k) – (k � dn/dk),
as seen in (7), there is:

ng kð Þ ¼ n 0ð Þ þ k � dn=dkð Þ½ �– k � dn=dkð Þ ¼ n 0ð Þ: ð16Þ
Group index ng is constant and equal to the value n(0) of
the phase index for a null wavelength (Fig. 3).

As it can be simply visualized with this Figure 3, normal
dispersion, i.e., a negative slope dn/dk, yields a group index
ng higher than the phase index n. Conversely, anomalous
dispersion, i.e., a positive slope dn/dk, yields a group index
ng lower than the phase index n, and one can easily under-
stand that with a steep positive slope, group index can

become lower than one, and even negative, which was
obviously a problem with the theory of Relativity, but this
was solved by Sommerfeld and Brillouin, as we already saw
[7–9].

Now, with the practical case of a material with group
dispersion, one must consider the tangent to the curve n
(k). Using Lagrange’s notation, which is clearer, here, than
Leibniz’s notation, the equation T0(k) of this tangent, for a
given wavelength k0, is:

T 0 kð Þ ¼ n k0ð Þ þ n0 k0ð Þ � k � k0ð Þ½ �: ð17Þ
Then, it is simple to see with (7) again, that for a null
wavelength:

T 0ð0Þ ¼ nðk0Þ � ½n0 k0ð Þ � k0� ¼ ngðk0Þ: ð18Þ
The tangent T0(k) to the curve n(k), at k0, crosses the
ordinate axis, i.e., when k is zero, at the value ng(k0) of

Fig. 2. Refractive (or phase) index n (solid line curve), and group index ng (dashed line curve) of silica, as a function of the
wavelength k in a vacuum. At 1.55 lm, the slope of the tangent to the curve n(k), i.e., dn/dk or n0(k), equates minus 0.012 lm�1, and
gives the chromatic, or first-order, dispersion; the one to the curve ng(k), i.e., dng/dk or n0

g(k), equates plus 0.007 lm�1, and
gives the group velocity dispersion, or second-order dispersion. Since 1/c = 1 ns/300 mm, the dispersion parameter
D(1.55 lm) = (1/c) � n0

g(1.55 lm) equates + 23 ps/(nm km).

Fig. 3. Refractive (or phase) index n(k) (solid line), and group
index ng(k) (dashed line), in the theoretical case of a material
without any group dispersion. The straight line representing
n(k) crosses the ordinate axis corresponding to k = 0, at the
constant value of ng(k) = n(0).
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the group index for k0 (Fig. 4). It is simple math, but it is
amusing and, also, very useful to visualize simply the rela-
tionship between n and ng.

Knowing this, Figure 1 can be revisited, even if silica is
not transparent anymore below 0.15 lm (Fig. 5). Mathe-
matically, it remains possible to continue the tangent
toward zero. Math does not care about causality, as we
already saw, nor does it care about transparency!

4 The case of a single-mode optical fiber

As we saw, a CW light wave propagates at a phase velocity
vu = x/km(x), in a bulk medium. In an optical fiber, there
are discrete modes that propagate at different phase veloc-
ities vui = x/bi(x), where bi(x) is called the propagation
constant of mode i [2, 3, 10]. These propagation constants
depend on the angular temporal frequencyx, and they have
an intermediate value between the angular spatial fre-
quency km2 in the cladding of refractive index n2, and km1,
the one in the core of refractive index n1. In the single-mode
regime, the high-order modes are above cut-off, and the fun-
damental mode is the only one that can propagate. Its prop-
agation constant b(x) follows:

km2 ¼ 2p � n2=k < bðxÞ < km1 ¼ 2p � n1=k: ð19Þ
It is very convenient to use the so-called effective index neff
of the mode defined with:

bðxÞ ¼ 2p � neffðxÞ=k: ð20Þ
Following (19), neff has an intermediate value between n2
and n1, and like b it depends on frequency:

n2 < neff xð Þ < n1: ð21Þ
The angular (temporal) frequency x is very useful to
shorten mathematical equations, but everybody is more
familiar with the wavelength k in a vacuum. You know
what is 1 lm, whereas 1 rad/s is not that obvious,
besides the fact that it corresponds to 0.16 Hz. Therefore,
the frequency dependence of neff is classically presented
with respect to kc/k, where kc is the cut-off wavelength
of the second-order mode. This ratio does correspond
to a frequency: it is the spatial frequency 1/k normalized
to 1/kc.

This effective index neff is a phase index, and all the
mathematical equations of Section 2 can be used to find
the effective group index ng-eff. It is also possible to use
the geometrical construction of Section 3, that relates a
group index to its corresponding phase index.

The way to proceed is to invert the classical curve
neff(kc/k), and to get the inverted curve neff(k/kc), that
depends on k, and not on 1/k anymore (Fig. 6).

It is interesting to notice that this inverted curve is
easier to understand, for the fundamental mode, than
the classical one: as the wavelength increases, the mode
widens [2], and it expands more in the cladding, which
decreases the effective index neff. However, the classical
representation remains better with several modes, since
their effective index curves are spread about evenly in

frequency, which would not be the case with the inverted
representation.

Now, once you have this inverted representation in
wavelength, you must just apply the geometrical construc-
tion of Figure 4, to find the value of the effective group
index ng-eff (Fig. 7).

Note, however, that it is possible to find also a geomet-
rical construction with the frequency dependence. It is not
as simple as with the period dependence, but it has some
interest. The equation of the tangent T0(x) to the curve
n(x), for a given angular frequency x0, is:

T 0 xð Þ ¼ n x0ð Þ þ x � x0ð Þ � n0 x0ð Þ½ �; ð22Þ

T 0ðxÞ ¼ T 0ð0Þ þ ½ðx � n0ðx0Þ� ð23Þ
with:

T 0 0ð Þ ¼ n x0ð Þ � x0 � n0 x0ð Þ½ �: ð24Þ
The slope of this tangent is n0(x0).

Consider now the affine function DS0(x) starting from
T0(0), and having a double slope, i.e., a slope equal to twice
that of the tangent T0(x):

DS0ðxÞ ¼ T 0ð0Þ þ 2 ½ x � n0 x0ð Þð �: ð25Þ
Following (24), there is:

DS0 x0ð Þ ¼ n x0ð Þ þ x0 � n0 x0ð Þ½ �: ð26Þ
As seen in (6), the group index follows ng(x) = n(x) +
[x � n0(x)], then:

DS0 x0ð Þ ¼ ng x0ð Þ: ð27Þ
With k, we saw that the tangent to the curve n(k), at k0,
crosses the ordinate axis at ng(k0). With x, one draws a
double-slope line DS0(x) (Fig. 8). In the case of the funda-
mental mode of a fiber, the double-slope construction can
be used with the classical curve neff(kc/k) seen in Figure 6a,
as shown in Figure 9.

Obviously, this geometrical construction can also be
used for high-order modes, as well as for integrated-optic
waveguides.

Fig. 4. Refractive (or phase) index n(k) (solid line curve), with
group dispersion. The tangent T0(k) to the curve n(k) at k0
crosses the ordinate axis corresponding to k = 0, at the value
ng(k0) of the group index for k0.
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Fig. 6. Effective index neff of the fundamental mode, n1 being the refractive index of the core, and n2 being the one of the cladding: (a)
classical representation, as a function of the normalized spatial frequency kc/k, in a vacuum; (b) inverted representation as a function
of the normalized wavelength k/kc, in a vacuum.

Fig. 5. Refractive (or phase) index n(k) (solid line curve), and group index ng(k) (dashed line curve) of silica. The tangent to the
curve n(k), at k0, crosses the extended ordinate axis, where k = 0 lm, at the value ng(k0) of the group index for k0, as shown for k0 equal
to 0.85 lm, or to 1.3 lm.

Fig. 7. Geometrical construction to derive the effective group index ng-eff(k/kc) of the fundamental mode (solid line curve) from its
effective phase index neff(k/kc) (dashed line curve). The tangent to neff(k/kc) crosses the ordinate axis at the value of the corresponding
effective group index ng-eff(k/kc), as shown for k = 1.25 kc. One sees easily that ng-eff is about equal to the refractive index of the core
n1, in the practical domain of use of a single-mode fiber, i.e., kc < k < 1.5 kc; above 1.5 kc, the mode starts to widen a lot and the
curvature loss increases drastically.
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5 The case of polarization mode dispersion in a
PM fiber

The use of phase and group indexes as normalized inverses
of velocity, as well as the geometrical constructions, that
were presented, are also very useful for birefringence and
intrinsic polarization mode dispersion (intrinsic PMD) [3]
of high-birefringence polarization-maintaining (PM) fibers.

Phase birefringence B, or modal birefringence, or simply
birefringence, is the difference between the phase effective
index nslow of the slow polarization mode, and nfast, that
of the fast mode. In addition, it is very convenient to use
the concept of group birefringence Bg, instead of intrinsic
PMD; this simplifies equations. Bg is the difference between
the group indexes ng-slow and ng-fast:

B ¼ nslow � nfast and Bg ¼ ng�slow � ng�fast: ð28Þ

Fig. 8. Two possible geometrical constructions for relating group index ng to phase index n: (a) with the dependence in wavelength k,
i.e., the spatial period of the wave, the tangent T0(k) to the phase index curve crosses the ordinate axis at the value ng(k0) of the group
index; (b) with the dependence in angular frequency x, a double-slope line DS0(x) is drawn from where the tangent T0(x) to the phase
index curve crosses the ordinate axis, and the group index ng(x0) equates DS0(x0).

Fig. 9. Geometrical construction relating the effective group index ng-eff to the effective index neff of the fundamental mode of a fiber,
with the dependence in normalized spatial frequency kc/k. A double-slope line is drawn from where the tangent to the effective index
curve crosses the ordinate axis, and the group index ng(kc/k0) equates DS0(kc/k0), as shown for kc/k0 = 0.8, i.e., for k0 = 1.25 kc. As in
Figure 7, one easily sees that ng-eff is about equal to the refractive index of the core n1, in the practical domain of use of a single-mode
fiber, i.e., kc < k < 1.5 kc, or 0.67 < kc/k < 1.
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We saw in (7), that ng(k) = n(k) – (k � dn/dk), then:
BgðkÞ ¼ ½nslowðkÞ – ðk � dnslow=dkÞ� � ½nfastðkÞ – ðk � dnfast=dkÞ�;

ð29Þ

BgðkÞ ¼ ½nslowðkÞ � nfastðkÞ� – ½k � ðdnslow=dk � dnfast=dkÞ�;
ð30Þ

BgðkÞ ¼ BðkÞ – ½k � dB=dk�: ð31Þ
This last equation (31) is similar to (7), replacing the
indexes by the birefringences, therefore the geometrical con-
struction, that we saw in Figure 4, can be used (Fig. 10).

The intrinsic PMDi of high-birefringence PM fibers is
the difference between the group delays per unit length of
both modes [3]:

PMDi ¼ tg�slow � tg�fast ¼ ð1=vg�slowÞ � ð1=vg�fastÞ
¼ ðng�slow=cÞ � ðng�fast=cÞ; ð32Þ

which yields a very simple equation:

PMDi ¼ Bg � 1=c ¼ ½B – ðk � dB=dkÞ� � 1=c ð33Þ
knowing that 1/c is about one nanosecond per foot, as we
already saw. Group birefringence is actually what is called
intrinsic PMD, but normalized to 1/c. Typical group bire-
fringence Bg of PM fibers is around 5 � 10�4, and again it
is a dimensionless value, which yields an intrinsic PMD on
the order of 1.5–2 ps/m.

Intrinsic PMD is related to phase birefringence disper-
sion: when dB/dk 6¼ 0, group birefringence Bg is different
from phase birefringence B; it is a first-order dispersion.
There is in addition group birefringence dispersion, when
the first derivative dBg/dk 6¼ 0. As with group index, it is
also when the second derivative d2B/dk2 6¼ 0, since
dBg/dk = �k � d2B/dk2. It is a second-order dispersion that
must be considered in certain cases as, for example, with
optical coherence-domain polarimetry (OCDP) also called
distributed polarization crosstalk analysis (DPXA) [13, 14].

6 Conclusion

This paper presents comments and geometrical construc-
tions that should ease the understanding of dispersion,
which is not always explained simply in textbooks. The
points to remember are:

– Group velocity is classically given with vg = dx/dkm,
i.e., x0(km), but this equation does not fully respect
causality, within the meaning of causal link between
its parameters.

– It is better to use 1/vg = dkm/dx, i.e., k0m(x). To be
more specific, it is n(k) yielding dn/dk, and not k(n)
yielding dk/dn.

– Phase and group indexes should be viewed as the
inverse of their respective velocity, normalized to 1/c.
This yields clearer equations for group dispersion
parameter, D = (1/c) � dng/dk, and for group velocity
dispersion, GVD = (1/c) � dng/dx. In addition, indexes
are dimensionless units, which avoids dealing with
units that are not always easily understandable.

– The term second-order dispersion, for group velocity
dispersion, should be used carefully. There is group
velocity dispersion when the group index ng is not con-
stant, which is the basic cause, causality again. It is the
case when the second derivative of the phase index with
respect to k, d2n/dk2, is not null, but it is only a conse-
quence of dng/dk = �k � d2n/dk2. With x, it does not
work anymore; it is when d2(n � x)/dx2 is not null,
and not d2n/dx2, that there is group dispersion.

– The unit of GVD, ps2/km or fs2/mm, remains strange
to me, and I should not be the only one.

– The two simple geometrical constructions that relate
group index ng to phase index n, with the tangent,
are very useful to visualize simply their relationship,
and they are new, to my knowledge. You must have
noticed that I prefer clear geometrical figures using sim-
ple math to complicated equations.

– These comments and these geometrical constructions
also apply to guidance dispersion in optical fiber and
integrated-optic waveguide.

Fig. 10. Geometrical construction relating group birefringence Bg to phase birefringence B(k) (solid line curve); the tangent T0(k) to
the curve B(k) at k0, crosses the ordinate axis corresponding to k = 0, at the value Bg(k0) of the group birefringence for k0. This figure
is obviously derived from Figure 4.
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– These comments and these geometrical constructions
can be used for birefringence and intrinsic polarization
mode dispersion in PM fibers or birefringent integrated-
optic waveguides, when the very convenient concept of
group birefringence is used.

I hope that this paper will be useful and help to clarify
the subject. It is just based on what I had not fully under-
stood about dispersion, over the forty-five years of my
career, as you can check in [15, 16], where I classically used
(1). I understand it better today, and I wanted to share it.
And as you did notice, I do like the simple and amusing geo-
metrical constructions with the tangent, which is the reason
for this paper, even if I did not resist adding some comments
that might look slightly provocative, but nevertheless
important, I think.

References

1 Born M., Wolf E. (1999) Principles of optics, 7th edn.,
Cambridge University Press.

2 Jeunhomme L.B. (1990) Single-mode fiber optics, 2nd edn.,
Marcel Dekker Inc.

3 Buck J.A. (2004) Fundamentals of optical fibers, 2nd edn.,
Wiley Series in Pure and Applied Optics, John Wiley & Sons.

4 Sellmeier W. (1872) Ueber die durch die Aetherschwingungen
erregten Mitschwingungen der Körpertheilchen und deren

Rückwirkung auf die ersteren, besonders zur Erklärung der
Dispersion und ihrer Anomalien, Annalen der Physik und
Chemie 223, 11, 386–403.

5 Aspect A. (2017) From Huygens’ waves to Einstein’s
Photons: Weird light, C. R. Acad. Sci. 18, 498–503.

6 Rayleigh J.W. (1877) The theory of sound, MacMillan and
Co.

7 Sommerfeld A. (1914) Über die Fortpflanzung des Lichtes in
dispergierenden Medien, Ann. Phys. 44, 177.

8 Brillouin L. (1914) Über die Fortpflanzung des Lichtes in
dispergierenden Medien, Ann. Phys. 44, 203.

9 Brillouin L. (1960) Wave propagation and group velocity,
Academic Press.

10 Agraval G.P. (1992) Fiber-optic communication systems,
Wiley Series in Microwave and Optical Engineering, John
Wiley & Sons.

11 Méndez A., Morse T.F. (2007) Specialty optical fibers
handbook, Academic Press, Elsevier.

12 Kumar A., Ghatak A. (2011) Polarization of light with
applications in optical fibers, Vol. TT90, SPIE Press.

13 Yao X.S. (2019) Techniques to ensure high-quality fiber
optic gyro coil production, in: E. Udd, M. Digonnet (eds.),
Design and development of fiber optic gyroscopes, chapter 11,
SPIE Press, pp. 217–261.

14 Lefèvre H.C. (2022) The fiber-optic gyroscope, 3rd edn.,
Artech House.

15 Lefèvre H. (1993) The fiber-optic gyroscope, Artech House.
16 Lefèvre H.C. (2014) The fiber-optic gyroscope, 2nd edn.,

Artech House.

J. Eur. Opt. Society-Rapid Publ. 18, 1 (2022) 9


	Introduction
	Comments regarding causality
	Simple geometrical constructions to derive ng from n
	The case of a single-mode optical fiber
	The case of polarization mode dispersion in a PM fiber
	Conclusion
	References

